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Abstract. 

The existing Computer Algebra Systems (like “MathLab”, “Mathematica”, and similar applications) are 

designed for professional mathematicians and engineers. They do not support at all, or only partially 

support dynamical interactions with graphical models. In any case, these tools require some mastery of 

nontrivial and cumbersome  programming syntax (for example, see Mathematica [11)— an obvious 

obstacle for the inexperienced learners of mathematics. The uniform non-formulaic interface for 

manipulating with virtual graphical models is lacking in the traditional Computer Algebra Systems.  On 

the other hand, the popular dynamic geometry applications (like “Geometer’s SketchPad”[5] or 

”Cinderella”[3]) are limited by their 2D-nature.  

“VisuMatica”, a comprehensive software package for visualizing and investigating mathematics, is 

designed to fill in this educational niche.  

In the paper, we aim to show how VisuMatica can handle virtual experiments in the intricate universe of 

multi-valued functions. Difficulties in grasping the concept of multivalued functions partially are due to 

the lack of adequate tools for their visualization. We present templates of visual models and interactive 

activities that could help students to explore the universe of multi-valued functions and to study the 

topology of Riemann surfaces. 

Multivalued functions, software, visualization. 

The Challenge of Multi-valued Arithmetics   

Perhaps, in the first time students meet with the concept of multivalued functions when 

dealing with the quadratic formula. The second encounter with the idea occurs in high 

school, while studying the notion of roots of complex numbers. This subject becomes 

especially important in the algebra of polynomial equations and in the complex analysis.  

Life in the world of multi-valued functions is hard: even adding them is a questionable 

operation! Just think how would you interpret, say, the formula ii  132 ? Does it 

represent four complex numbers—all the possible sums of a number from the 
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two-element set i32 and a number from the two-element set i1 ? If so, how about 

the product ii  1*32 ?  That set must consist only of two elements because (±1)*(±1) 

= (±1)*(  1) = (±1)! Along the same lines, is it true that zzz 2 ? Well, if z  

takes two values, say a and -a, then the possibilities for zz  are: 2a, -2a, and 0 = a + 

(-a). On the other hand, the possibilities for z2 are only 2a and -2a.  

So the standard algebraic rules for operating with regular functions fail miserably when 

dealing with multi-valued ones.  

Domain-Range Visual Representations of Multi-valued Functions 

In order to visualize a map f: C  C of complex planes on a computer screen, we separate 

the domain and range of f and show them in two different views-windows [9]. This 

presentation helps to visualize the correspondence between the source z and the target(s) 

f(z). For example, we can use the colour coding to indicate the correspondence (compare 

this interface with [4], [10] and [12], where only the range window is available). 

Let us start with the example of how VisuMatica represents the multi-valued function f(z) 

= 5 z  (it describes all the solutions of the complex equation w
5
 = z for a variety of 

complex numbers z) (see Fig. 1). As we move the cursor over the point z of the complex 

plane (the domain window), the set of values 5 z is displayed in a different complex plane 

(the range window). The color-coding emphasizes the five-fold ambiguity in determining 

the value of f in the range. Note that the five images of z share their colour with z 

(currently yellow).  

 

                    Figure 1. The multi-valued image of the cursor under the map z  5 z  
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 (a)  (b) 

Figure 2. The range view of the function zzw  1.0  

(the cursor resides at z = -1 + i): 

a) the disabled (default) option ―eliminate multi-valued repetitions‖ produces 8 values, 

b) the enabled one produces only 4 values by treating the two occurrences of z as equal. 

Occasionally, a dynamic visualization of multiple values of a function becomes difficult 

if done by moving the mouse manually. In such cases, we can specify the mouse 

trajectory analytically.  For example, consider the 6-valued function 
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 .  The task is to see the trajectories traced by its multiple 

values, as the pointer at z moves, say along the circle of radius 1.25, centred on the origin. 

Fig. 3 shows the image trajectories.   

Using the ―Simulation‖ tool of the ―Mapping‖ dialog box and moving the slider (marked 

by an arrow in Fig. 3), the user can control the movement of z in the domain and of its 

image(s) f(z) in the range. The value of the polar coordinate of z is automatically updated 

in the textbox on the right side of the slider.  One can type in this textbox the value of an 

angle; the pointer and its corresponding six images (the small red circles) will appear in 

the Range window. 
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 Figure 3. The 6 images of the cursor on the circle trace two loops; each loop contains 3   

images of the cursor, controlled by the ―Simulation‖ tool of ―Mapping‖ dialog box. 

Multi-valued Functions and Riemann Surfaces 

Problems with the arithmetic of multi-valued functions have an elegant solution. In the 

case of multi-valued analytic functions of a single complex variable, the proposed 

solution is called ―The Riemann Surface‖. On technical level, the construction of 

Riemann surfaces is based on the principle of analytic continuation. However, here we 

adopt a more geometrical viewpoint. In any case, our goal here is not to introduce the 

reader to the classical theory of Riemann surfaces (see [2], [8]), but to show the 

usefulness of VisuMatica in generating expressive dynamic images, the images that 

facilitate our understanding of the subject.   

At the first glance, the idea of a Riemann surface looks as a cheap trick: we replace the 

domain of a given multi-valued function by a new more complex domain on which the 

function becomes single-valued.  

Let us illustrate this trick with the simplest possible example.  Take the 2-valued function   

f(z) = z of the complex variable z. Consider the complex algebraic curve (the real 

surface)  in C
2 
whose equation is {w

2
 = z}, a complex parabola. If w = u + iv and z = x + 

iy, then, in the real uvxy-space, can be also described by two quadratic polynomial 

equations:                {x = u
2
 – v

2
, y = 2uv}.  

As we try to express w in terms of z, we get w = z , our original 2-valued function.  

Now replace C, the domain of z , with the curve/surface , and f(z) = z with the 

coordinate w, viewed as a single-valued function on . Note that the coordinate w is a 

map from C
2
 to C and thus can be applied to any subset in its domain, including the 

complex curve . This complex curve , equipped with the coordinate maps z:  C 

and w:  C, is the Riemann surface of the function z .  
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So how can we visualize this and other Riemann surfaces? Since we do not have the gift 

of seeing a 2-dimensional object in a 4D-space, we need to downgrade our ambitions to 

2-dimensional objects in 3D. Here is where VisuMatica becomes handy. Of course, such 

a 3-dimensional picture will not give a faithful representation of the way  resides in C
2
. 

Nevertheless, it will be very useful for understanding the geometry of  in connection to 

both coordinates z and w in C
2
. Moreover, an appropriate pair of such 3D-images will 

constitute a faithful representation of  in C
2
. 

Let us examine a more general setting.  Let G(z, w)  be a complex polynomial of degree d 

in the variables z and w. Consider an algebraic curve (a real surface) whose equation in 

C
2
 is G(z, w) = 0. How is it possible to draw ?  

Here is the main idea behind traditional depictions of  in 3D. Let Fa stand for the 

intersection of  with the complex line {z = a}.  If a polynomial G(z, w) of degree d is not 

divisible by (z – a), then Fa is a finite set of cardinality d at most. Consider w(Fa), the 

w-image of Fa in C. Pick one of the following standard coordinate functions x: C  R or 

y: C  R (as usually, x(z) = Re(z) and y(z) = Im(z)). For each z in C, apply the function x 

(or y) to the set w(Fz) in C to produce the set x(w(Fz)) in R.  Let V be the real 3D-space of 

pairs (z, t), where z is a complex number and t is a real number. Consider a surface x in V, 

formed by the pairs (z, t), where z runs over C and t belongs to the finite set x(w(Fz)) 

―suspended over z‖. Similarly, employing the function y: C  R, we can construct 

another surface y in V. We view both surfaces, x and y, as representing the same 

Riemann surface . Each of them gives a lot of information about ; together they form 

its faithful representation. 

Riemann surfaces  have an interesting topology. It can be recovered from their images 

(like x) in 3D. For a generic degree d polynomial G(z, w), topologically  is a 2-sphere to 

which (d – 1)(d – 2)/2 handles  have been attached and from which d points have been 

deleted (see the left picture in Fig. 4). In particular, for d = 2, we get a 2-sphere with two 

punctures; for d = 3, we get a torus (the surface of a bagel) with three punctures. When  

has singularities (for example, simple self-intersections), its topology is more complex 

(see the right picture in Fig. 4). In such a case,  can have singularities that are obtained 

by identifying a number of points on a punctured 2-sphere with (d – 1)(d – 2)/2 handles 

into a single point. For example, in the vicinity of a simple self-intersection point,  looks 

like a double cone (consider the vicinity of bold black points in Fig.4). 

 

 

Figure 4. Some topological types of Riemann surfaces 
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Fig. 5 shows the surface x for the familiar quadratic parabola  = {z – w
2
 = 0}, the 

Riemann surface of the multi-valued function z
{1/2}

.  Even in this most basic case, 

reconstructing the topological type of  from these pictures takes some thought. In fact,  

is a 2-disk, or a 2-sphere with a single puncture.  

Often it is more expressive and informative to show the intersections of the surfaces x or 

y with the surface of a square prism {|Re(z)| ≤ r, |Im(z)| ≤ r} (see Fig. 5, (a) and (b)) or 

with the surface of  a circular cylinder {|z| ≤ r} (see Fig. 5 (c) and (d)), both residing in the 

3D-space V = C
1

z
R

1
t.  

In Fig. 5, (b), the intersections of x with the surface of the prism is shown as a narrow 

self-intersecting colourful band, while the intersections of x with the prism itself look 

semitransparent.   

 
Figure 5. Various modes of depicting the Riemann surface x ={t = Re( z )} of the 

multi-valued function z
{1/2}

. The surface resides in the real 3D-space C
1

zR
1

t. 

In the case of a circular cylinder, we show (diagram (c)) only the intersection Q of x with 

the surface H of the cylinder.  Cutting H along a vertical line opens H into a rectangle. The 

rectangle retains the intersection pattern Q. This pattern is especially informative when 

we are trying to count the number of loops in the boundary of the portion of  that is 

contained in the subset {(z, w): |z| ≤ r} of the space C
2

zw. As you see, the intersection of x 

with the surface of the cylinder {(z, t): |z| ≤ r} forms a single self-intersecting loop. 

It is clear from Fig. 5 that the behaviour of the projection : x  C
1

z over the origin 0 is 

qualitatively different from its behaviour over any other point z in C
1

z. Such special point 

(like the origin) in the target space is called a ramification point of the map . The subset 

Fz =  
-1

(z) of  is called the fiber of the map  over the point z. 

In fact, Riemann surfaces do not solve all our problems with multi-valued formulas in a 

single complex variable: for example, there is no simple connection between the Riemann 

surfaces of the multi-valued functions f(z) = 3 z , g(z) = z1 and their sum h(z) = 

zz  13 . The first one, f, is the cubic parabola {w
3
 = z}; the second one, g, is the 

quadratic parabola    {w
2
 = z + 1}; the third one, h, is an algebraic curve of degree 6 

whose equation {(w
3
 + 3zw + 3w – z)

2
 = (1 + z)(3w

2
 + z + 1)

2
}we did not bother to 

simplify. 
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Figure 6. The Riemann surfaces of 3 z , z1 , and zz  13 . 

The three surfaces f, g, and h, are not related in any obvious way (see Fig. 6 which 

shows the surfaces fx, 
g

x, and hx,), except for the evident relation between their 

ramification points. However, they testify that, for each z in C
1

z, there is a peculiar way of 

continuous coupling of elements from the fiber z
f
 (of cardinality ≤ 3) with the elements 

of the z
g
 (of cardinality ≤ 2), so that the coupling produces elements of the fiber z

h
 (of 

cardinality ≤ 6)! Note that there are exactly 6 handshakes between the members of a 

group of two friends and the members of a group of three friends… 

Our hope is that creating graphical representations like Fig. 5 and Fig. 6 will help students 

to develop intuitive mental models of the ramification phenomenon, pivotal for the theory 

of multivalued complex functions.  

Investigating the Quadratic Formula with VisuMatica 

After getting somewhat familiar with the notion of a Riemann surface and the geometry 

of multi-valued functions it reflects, let us revisit the familiar quadratic formula -

q
pp


42

2

. Each of its two values satisfies the equation w
2
 + pw + q = 0.  We can study 

the surface S whose equation in the pqw-space (real or complex) is {w
2
 + pw + q = 0} (see 

Fig. 7). The surface S is equipped with the projection : S  R
2

pq (or : S  C
2

pq), where 

(p, q, w) = (p, q), and with the coordinate function w: S  R (or w: S  C). The 

construction of S resembles a high-dimensional analogue of the Riemann surface 

construction: one replaces the multi-valued formula f(p, q) = - q
pp


42

2

 with the 

―honest‖ function w: S   C.  

Our graphics ability to show the projection of S onto C
2

pq is even more limited than our 

ability to portray Riemann surfaces. Nevertheless, since VisuMatica does a decent job of 
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showing Riemann surfaces in 3D, we take advantage of this ability to get insights into the 

geometry of projection : S  C
2

pq.  

Let us pick a complex line or a curve C in the pq-coefficient space. Consider the complex 

curve --1
(C), the ―slice‖  of S suspended over C. Then we have a chance to visualize 

the projection :  C.  

For example, take the line {p = const} for the role of C. In particular, the q-axis {p = 0} is 

a good example to start with. Then the quadratic formula collapses to f(0, q) = q ,  and 

in the q-direction we see a copy of the familiar Riemann surface for the radical z . The 

behaviour of :  C, where C is a line transversal to the discriminant curve D ={p
2
/4 – 

q = 0} at a point (p, q), is similar.  

For a generic line C, the map :   C has two ramification points; these are the points 

where the line C hits the discriminant curve D. Fig. 7 shows the lift to  of a loop  in C 

that captures: a) none of the ramification points (then  
-1

() consists of two loops and  is 

1-to-1 on each of them), b) a single ramification point (then  -1
() consists of a single 

loop and  is 2-to-1 on it), c) both ramification points (again,  
-1

() consists of two loops 

and is 1-to-1 on each of them). In Fig. 7, we have chosen the line {q = 1+ i} for the role 

of C. 

In fact, outside VisuMatica, we do not know about any attempts to visualize the geometry 

of complex quadratic formula. 

Visualizing the Cardano Cubic Formula and its S3-symmetry 

In a similar spirit, let us investigate the solutions of depressed cubic equations  

z
3
 + pz + q = 0.  

The substitution z = w – 3p/w transforms this equation into an auxiliary equation              

w
6
 + qw

3
 - p

3
/27 = 0 of degree six. The latter admits solutions in radicals. In fact, its 

general solution w is given by the formula (p, q) = [-q/2 + (q2/4 + p
3
/27)

{1/2}
]

{1/3}
, a 

6-valued function in the complex variables p, q. Moreover, any solution z of the original 

cubic equation is given by the Cardano Formula (p, q) – 3p/(p, q) (see [2]). 

Let us explore the geometry and symmetry of the Cardano formula with VisuMatica.  

Fig. 8 shows a remarkably symmetric pattern of values {(p, q)}, where q = Ap + B. Note 

that the six values of  split into two triples, each of which forms a regular triangle. The 

two triangles can be exchanged by a rational linear transformation of the complex plane, 

a transformation which resembles the inversion map with respect to a given circle. In 

fact, the action of S3, the permutation group in tree elements, preserves the configuration 

of six points in Fig. 8.  
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It is interesting to observe that the three solutions of the original cubic equation z
3
 + pz + q = 0 

do not exhibit any evident symmetry. In a sense, it is the hidden S3-symmetry of the 

auxiliary equation that allows for the solution of the original cubic equation in radicals! 

 

 

Figure 7. Lifting to the surface  different loops  in the plane (complex line) C. The loops  

capture in distinct ways some ramification points of the map :  C. 

Let us take these observations further. 

Denote by S the surface {z
3
 + pz + q = 0} in and by W the surface {w

6
 + qw

3
 - p

3
/27 = 0}. 

Both surfaces project on the coefficient plane C
2

pq. Moreover, the substitution z = w – 

3p/w gives rise to a partially defined 2-to-1 ramified map k: W  S. 
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Figure 8. The S3-symmetrical pattern of the set (p, Ap + B) 

As in case with the quadratic formula, we will visualize complex slices S and W of S and 

W that are suspended over a typical line C in C
2

pq. Fig. 10 (cf. Fig. 3) shows the Riemann 

surface of the complex function (p, p - i). Fig. 11 depicts the nature of the map : W  C 

in the vicinity of its ramification points. For generic line C, they are the three points where 

C hits the complex discriminant curve D = {q
2
/4 + p

3
/27 = 0} (see Fig. 9 for the real 

analogue of the curve D) and a singleton where C hits the coordinate line {p = 0}. These 

pictures help us to reconstruct the topology of a typical slice W, shown in Fig. 12 (see [6], 

[7] for more details). It exhibits a remarkable S3-symmetry, where S3 denotes the 

permutation group in 3 symbols.  

 

Figure 9. The real discriminant curve D = {q
2
/4 + p

3
/27 = 0} 
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Figure 10. The Riemann surface of the Cardano function (p, p - i) over the circle |p|=1.25 

 

Figure 11. The Riemann surface : W  L over a big square/disk U in the complex line L. 

Note that --1
( U) consists of 3 loops. 

Fig. 11 and its variations help to analyse the topology of the slice W of the surface W =  

{w
6
 + qw

3
 - p

3
/27 = 0} over a generic line L in the coefficient plane C

2
pq.  The next Fig. 12 

depicts the ecstatically pleasing results of this analysis.  

Of course, an algebraic geometer will easily determine this topology using some standard 

computational techniques ([2], [8]). Again, our point is that VisuMatica can replace these 

relatively advanced computations with dynamic interactive models that faithfully reflect 

them.  

Note the complex curve W has two singularities one of which resides ―at ∞‖. Each of the 

two singular points, 0 and ∞, has a small neighbourhood in W whose the boundary consist 

of 3 loops (Fig. 11 shows these three loops in the vicinity of ∞, and Fig. 12 delivers a 

―global view‖ of W and its singularities). 

 

Figure 12. The topology of a typical slice W of the Cardano surface W over a generic line L 

in C
2

pq.  

Visualizing the Monodromy of Riemann Surfaces while Exploring the 

Abel-Ruffini Theorem  

In studying the solvability of polynomial equations P(z) = 0, it is important to understand 

the so called monodromies of the Riemann surface P associated with a given equation. 

As usual, we call VisuMatica for help.  
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In this context, monodromies are transformations of the fibers -1
(p) of map : P  C, 

the transformations that occur as p traces a loop in C. The right diagrams in Figures 10 

and 11 will give the reader an intuitive feel for the monodromy concept: just follow each 

curve on the surface of cylinders to see where it starts and ends on a fixed vertical line. 

We will not attempt here to explain the Geometric Galois Theory (see [1], [6]) in its full 

generality. Instead, consider one specific p-family of equations: {z
5
 – z + p = 0}.  

The famous Abel-Ruffini Theorem claims that the equations {z
5
 – z + p = 0} have no 

solutions in radicals for all, but finitely many values of p!   

Let be the curve {z
5
 – z + p = 0} in C

2
pz equipped with the projection : (z, p)  p on 

the p-coordinate line C. This map :   C is ramified over four points p1, p2, p3, p4 in C. 

As we trace a loop  in the complement  to these four points, at each point p of , a 

permutation of the fiber -1(p) is generated (note that  -1
(p) is exactly the set of all five 

roots of the equation z
5
 – z + p = 0). This permutation is an element of S5, the permutation 

group in five elements (see Fig. 12).  

An important step in proving the Abel-Ruffini Theorem is to check that any permutation 

from S5 can be realized as the monodromy of :   C along an appropriate loop  in  

(an algebraist would say: ―S5 is the Galois group of a generic equation z
5
 – z + p = 0‖). 

Eventually, this conclusion clashes with the assumption that there exists a formula in 

radicals that solves all equations of the form z
5
 – z + p = 0. 

 

Figure 13. The cyclic permutation of order 3 of the fiber -1(p) of the ramified map :  

C. The permutation is induced by moving along the loop  (the oval on the right), which 

encapsulates only two ramification points of . 

The RHS diagram in Fig. 12 provides us with an effective visualisation of the 

monodromy of the map :  C. This pattern of five strings is called a braid. The braids 

can be interpreted as elements of a group B5, an extension of the permutation group S5. 

Braid groups play an important role in algebra, topology, and the singularity theory. So 

VisuMatica is able to portray braids well. 
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Concluding remarks 

[6] and [1] contain a variety of projects and virtual experiments that extend the ones 

suggested by this paper, as well as an explanation of mathematical theory behind them. 

Although such theory resides on the border between undergraduate and graduate 

mathematics, the interactive use of VisuMatica makes it much more accessible to 

students with different mathematical backgrounds.     
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